If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10p^2-4p+25p-10=0
We add all the numbers together, and all the variables
10p^2+21p-10=0
a = 10; b = 21; c = -10;
Δ = b2-4ac
Δ = 212-4·10·(-10)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-29}{2*10}=\frac{-50}{20} =-2+1/2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+29}{2*10}=\frac{8}{20} =2/5 $
| y=7/9+7/6 | | 3z/2+z/3=11/2 | | 26.1^5x=10 | | x/8-3=x/11 | | |a+29|=47 | | x/7-2=x/9 | | -5x-6(3x+15)+5=19 | | y(y+2)=575 | | Y=7y+27 | | 3x^2=4x+6 | | 21/4=12/7/x | | -112=8(1-3a) | | 14a(3a-2)=2(2.5a+1)-(a-1) | | 28=1/2(124-x) | | -x+10=(1/2)x+1 | | 3=6/5a | | X^2=16x+336 | | 3(7v+2)=-99 | | 180=-w+90 | | (x+1)/2+(x+4)/5=2 | | 25x^2-35=5x^2+125 | | -u+283=44 | | -105=-3(6x-7) | | 294-w=231 | | 2x+3+2x+2x+3+2x+2x+3+2x=36 | | -8x-10x=-18 | | 8(8x-6)=272 | | Y=(8x-1)/(2x+3) | | 72-40=8x+17-5x | | 20x^2-160=0 | | 10f+10=90 | | (x)=x2-6x-7 |